

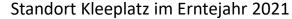
Inhalt

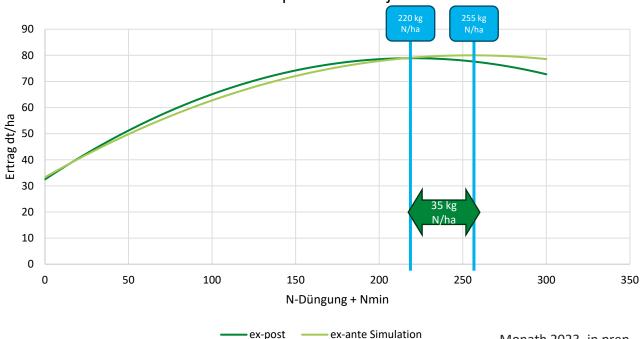
- Problemstellung und Herausforderungen in der Pflanzenernährung
- 2. Status Quo der Bedarfsermittlung
- 3. Dynamische Düngebedarfsermittlung
- 4. Zukünftige Anknüpfungspunkte

Problemstellung und Herausforderungen in der Pflanzenernährung

Theoretischer Hintergrund

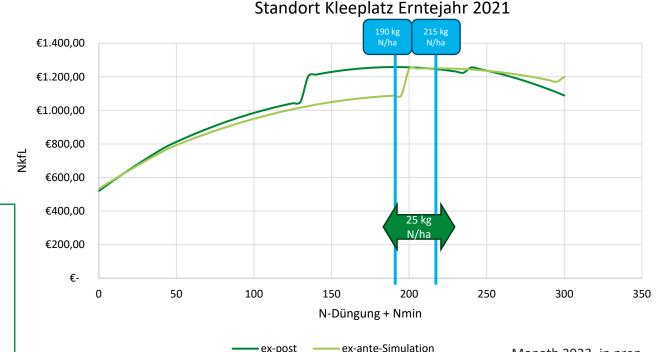
Ökonometrie Entscheidungstheorie


Vergleich ex-ante/ex-post – Unterschiedliche Blickwinkel



- Ex-post ist die zeitliche Perspektive in Analysen oder Beurteilungen, die Ereignisse, Sachverhalte oder Zustände nachträglich bewerten sollen.
 - Enthält das Bewusstsein über die beobachtete Ausprägung von Umweltzuständen
 - Tatsächliches Ergebnis
- Ex-ante ist die zeitliche Perspektive in Analysen oder Beurteilungen, die künftige Ereignisse,
 Sachverhalte oder Zustände bewerten sollen.
 - Enthält das Bewusstsein über unsichere/risikobehaftete Ausprägungen von Umweltzuständen
 - Vermutetes (simuliertes) Ergebnis

Vergleich ex-post/ex-ante: Ertragsfunktionen im Praxisversuch



Nmin = 48 Nmin (simuliert) = 43

Monath 2023, in prep.

Vergleich ex-post/ex-ante: Optimale spezielle Intensität der N-Düngung im Praxisversuch

ex-post

Nmin = 48Nmin (simuliert) = 43 Kosten N = 1,00 €/kg Futterweizen = 16,00 €/dt B-Weizen = 18,00 €/dt A-Weizen = 18,50 €/dt

Simulation der Preise und Kosten in der ex-ante-Betrachtung

Monath 2023, in prep.

Risiko und Unsicherheit in Entscheidungssituationen

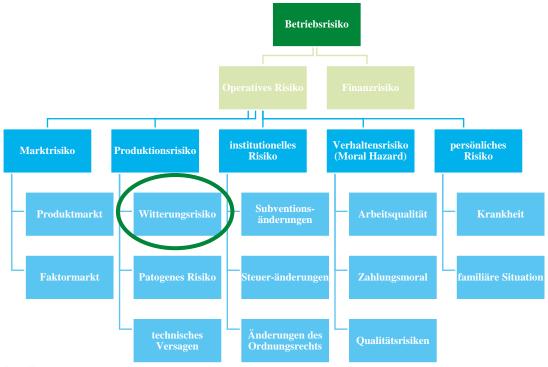
Es besteht Unsicherheit über die Ausprägung verschiedener Umweltzustände in einer risikobehafteten Entscheidungssituation.

"Risk can be defined as the uncertainty of outcomes." (Karatay & Meyer-Aurich, 2020, S. 451)

Was sagt uns das?

Aufgrund von Risiko und/oder Unsicherheit besteht eine Diskrepanz zwischen der ex-ante- und ex-post-optimalen Entscheidung des Landwirts.

Inferenzproblem des Pflanzenbaus



Praxis

Produktionsrisiko

Risikoarten in der Landwirtschaft

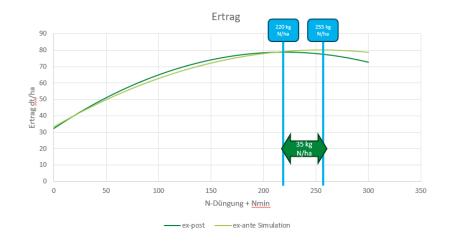
Nach Hirschauer und Mußhoff, 2012, S. 9

Mögliche Folgen

- Unangepasste Pflanzenernährung
- Ineffizienter Betriebsmittel-/Nährstoffeinsatz
- Höhere Kosten, niedrigere Erträge und Qualitäten
- Externalitäten
 - Nitratauswaschung
 - THG-Emissionen
 - Sonst. Umweltkosten
- Langfristig schlechte Entscheidungsgrundlage

Was kann der Landwirt tun? - Risikomanagement

Anpassung an risikobehaftete Entscheidungssituationen


- Streuung von Zufallsgrößen reduzieren
 - Düngung
 - Pflanzenschutz
 - Bewässerung
 - Preise absichern
- Controlling des bisherigen Vorgehens
 - Heuristiken
 - Datengewinnung
 - Modellierung

Zielsetzung

- Reduktion des Abstands zwischen ex-ante- und ex-post-optimaler spezieller Intensität der N-Düngung
 - Versorgung der Pflanze an den Bedarf anpassen
- Verbesserung der Entscheidungsgrundlage für zukünftige Aufgaben

Nötige Grundlagen

Daten, Information, Wissen

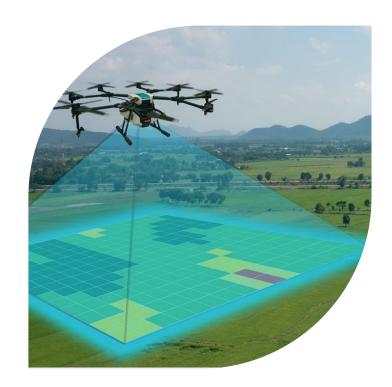
Informationsgewinnung und Datenverarbeitung

Steigende Komplexität von Entscheidungssituationen: kognitive Belastung/ Überlastung des Landwirts (cognitive overload)

- Wachsende Informationsmenge
- Heuristiken als Behelfsmaßnahme werden hinterfragt
- Integration von Sensorik und Datenverarbeitung in den Betriebsablauf

Frage: Woher kommt die Information und was sagt sie aus?

Standort (-heterogenität) – langfristig stabil


- Wird off-season erfasst
- Bodenarten
- Wasserverfügbarkeit (nFK)
- Kleinklima
- Langjährige Witterungsverhältnisse
- **...**

Bestand (-heterogenität) – kurzfristig stabil

- Direkt von Standortheterogenität beeinflusst
- Kann in-season erfasst werden
- Aktuelle Situation
- Enthält jahresabhängige Information
 - Krankheiten
 - Nährstoffversorgung
 - Biomasse (NDVI)
 - **...**
- Mehrjährig: Information über Standort

Schlaghistorie

- Vorfrüchte/ Fruchtfolge
- Organische Düngung
- patogene Schadereignisse
- Unkrautspektrum
- Art der Bodenbearbeitung
- Bewirtschaftungsfehler (bspw. Verdichtungen)
- **...**

Qualitative Information über Pflanzen und Boden

- Nährstoffversorgung
- Stressindikatoren
- Bodenfeuchte
- Bodentemperatur
- **...**

Qualitative Information über Pflanzen und Boden

- Nährstoffversorgung
- Stressindikatoren
- Bodenfeuchte
- Bodentemperatur

...

Status Quo der Bedarfsermittlung

Aktuelle Regulatorik – one-fits-all

Politische Rahmenbedingungen, wie die Nitratrichtlinie und Initiativen wie die Farm-to-Fork Strategie zielen darauf ab, Verluste in der Düngung zu reduzieren und die Effizienz zu steigern. Zur Umsetzung definiert die Düngeverordnung einige Maßnahmen:

- Obergrenze für die Ausbringung von Organischen und organisch-mineralischen Düngern in Höhe von 170 kg/N insgesamt pro Hektar (flächengenau)
- Pauschale Reduktion des ermittelten N-Bedarfs um 20 % in roten Gebieten im Betrieb (Ausnahme 160 kg N-Grenze)
- Herbstdüngung von Winterraps, Wintergerste sowie Zwischenfrüchte ohne Futternutzung ist stark eingeschränkt oder nicht möglich
- Kulturen, die nach dem 1. Februar gesät werden, dürfen nur gedüngt werden wenn vorher eine Zwischenfrucht angebaut wurde
- Dokumentationspflicht von Landwirt*innen spätestens zwei Tage nach der jeweiligen Düngemaßnahme

Praxisbeispiel – Vergleich

Kleeplatz 2019 – Winterweizen (Ambello)

Ertrag 67,6 dt/ha

■ Protein 13,1 %

■ N-Düngung 171 kg N/ha

Nmin61 kg N/ha

■ Summe N 232 kg N/ha

Kleeplatz 2021 – Winterweizen (Chevignon)

Ertrag78,6 dt/ha

■ Protein 12,7 %

N-Düngung166 kg N/ha

Nmin 48 kg N/ha

■ Summe N 214 kg N/ha

Stand der Forschung

Bischoff et al 2017:

"Realistische Ertragserwartungen bei der Höhe der N-Düngung annehmen" Techen 2018:

"Beratungsleistung für verbesserte Entscheidungsgrundlage mit messbarem Effekt auf N-Bilanzen"

Technik und Systeme:

HS Triesdorf, Uni Kiel:

Zahlreiche Versuche und Projekte zu Effekte teilflächenspezifischer Düngung Nutzen

Frankreich: Cohen, Soenen, ARVALIS

System zur kontinuierlichen Datenverarbeitung und Abschätzung des N-Bedarfs

Diverse N-Management-Tools sind heute bereits im Einsatz

Online-Sensoren

Teilflächenapplikation

Satellitenbasiert

Handsensoren

Drohnenbasiert

Manuell, z. B. Frischmassemethode

Dynamische Düngebedarfsermittlung

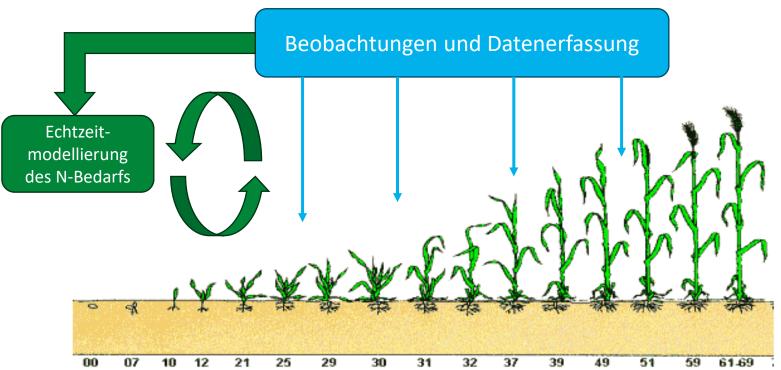
DEMAND

<u>D</u>igital <u>erm</u>öglichte dyn<u>a</u>mische Dü<u>n</u>gebe<u>d</u>arfsermittlung

Düngebedarfsermittlung

- Europäische Ebene (Bsp. Frankreich)
 - Bundesebene (BMEL)
 - Länderebene

Beispiel Frankreich



- Erste Düngergabe orientiert sich an Bilanzmethode
 - Unterscheidet sich zwischen Regionen und Standortgegebenheiten
- Ertrags- und Qualitätsbetonte Gaben orientieren sich an datengestützten Modellen
 - Farmstar-QN-Methode: Kombination der N-Effizienz und einem agronomischen Prognosemodell
 - Ziel: Ausgewogene N-Versorgung
 - NNI = nitrogen nutrient index

$$NNI = \frac{\text{aktueller N-Gehalt in \%}}{\text{optimaler N-Gehalt in \%}}$$

Beispiel Frankreich – QN-Methode



https://www.raiffeisen.com/pflanzen/ackermanager/ec.html

Beispiel Frankreich – QN-Methode

- Neben der gemessenen N-Aufnahme der Pflanze und Biomasse zusätzlich ein Prognosemodell
- CHN: kontinuierliche Simulation der N-Dynamik im Boden-Pflanzen-System
 - Ergänzend: Wasserverfügbarkeit und Kohlenstoffkreislauf
 - Simulierter N-Bedarf auf Basis der erfassten Daten
- Zielsetzung: NNI = 0,9 zum Zeitpunkt der Blüte

Beispiel Frankreich

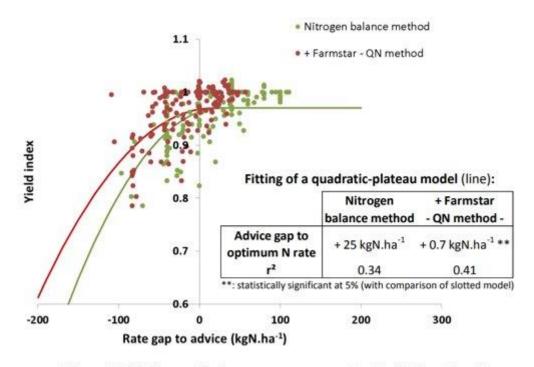
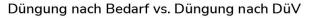
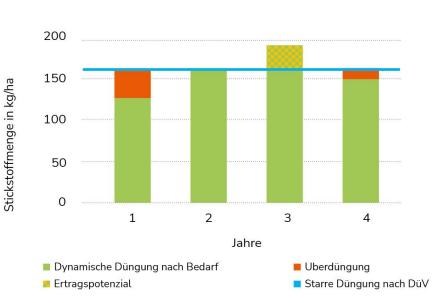


Figure 4. Efficiency of nitrogen management with "QN method" in comparison with nitrogen balance method alone

Umsetzungspotenziale in Deutschland

Chancen


- DEMAND wird in Frankreich bereits umgesetzt (ARVALIS & INRAE)
- Zwei Bundesländer (NRW/SH) setzen dynamische Düngebedarfsermittlung bereits ein (Frischmassemethode)
- Literatur zeigt Potenziale für höhere N-Effizienz bei gleicher Düngungsmenge mit Digitalen Tools
- Erleichtere Dokumentation durch digitale Tools


Herausforderungen

- Bundesweite Lösung über Anpassung der DüV in naher Zukunft nicht absehbar
- Bestehende dynamische Düngebedarfsermittlungen werden heute begrenzt von Landwirten genutzt
 - Nachdüngung auf max. 10 Prozent des ermittelten N-Bedarfs
 - Zusätzlicher Aufwand durch Dokumentation sowie "Kontrollrisiko"

Ergebnis: Thesenpapier zu DEMAND

- DüV schreibt in roten Gebieten eine starre
 Düngung i.H.v. 160 kg N/ha vor
- Starre Düngung schließt Überdüngung und Unterversorgung nicht aus
- Dynamische Düngung beschreibt eine nachträgliche Anpassung der Düngung an den tatsächlichen Bedarf
- Ziel: Pflanzen nicht hungern zu lassen und nicht zu überdüngen.

Digitale Tools ermöglichen eine smarte Ermittlung des dynamischen Düngebedarfs

- Das Beispiel in Frankreich zeigt, dass der feldspezifische Bedarf mithilfe von N-Management Tools smart, sicher und wirksam abgeschätzt werden kann, ohne dass aufwendige, manuelle Methoden verwendet werden müssen.
- Im Vergleich zur bestehenden statischen Düngebedarfsermittlung können N-Management Tools nachträglich eintretende Umstände, wie saison- und klimabedingte Einflussfaktoren auf das Pflanzenwachstum, besser abschätzen und somit eine realistischere Schätzung des Düngebedarfs angeben.

Nächste Schritte

- IVA-Thesenpapier zu DEMAND
 - Auf iva.de online verfügbar
 - Google-Stichworte: "iva" und "DEMAND"
 - Zugriff über QR-Code möglich
- Nächste Schritte:
 - Austausch mit Stakeholdern aus Verbänden (Landhandel),
 Beratung und Landwirtschaftskammern
 - Politische Ansprache für den Ansatz auf Länder- und Bundesebene

IVA-Forderungen

- Eine Entwicklung weg von einer starren Düngebedarfsermittlung hin zu einer dynamischen Düngebedarfsermittlung als smartes Mittel für mehr Nährstoffeffizienz und weniger Verluste.
- Die Verwendung der Bilanzmethode in der Düngebedarfsermittlung DüV §4 anstatt der 20% Reduktion in roten Gebieten, wie im französischen Vorbild
- Die Einrichtung eines bundeseinheitlichen Zertifizierungssystems und einer Stelle zur Anerkennung von N-Management Tools für eine dynamische Düngebedarfsermittlung z. B. durch das Thünen-Institut oder das JKI, DLG oder DFKI (AgriTEF)
- Ein praktikables Verfahren für Landwirte zur Durchführung und dem Nachweis des dynamischen
 Düngebedarfs (z. B. auf Basis des Beispiels in Frankreich).
- Anreize schaffen für Schulung und Beratung von Landwirten zur flächendeckenden Umsetzung des Verfahrens.

Welche Anknüpfungspunkte bestehen in Zukunft?

Erinnerung: Produktionsrisiko als Ursache eines Inferenzproblems im Pflanzenbau

- Ergänzung des Systems mit weiterer Information über
 - Standort
 - Witterung
 - Kulturpflanze
 - Anbausystem und Bewirtschaftung
 - Ökonomie = Preise und Kosten (ggf. simuliert)
- Informatisierung und Weiterentwicklung zu einem Entscheidungshilfemodell
 - Sensorik
 - Aktorik

Nächste Schritte

- Austausch mit Stakeholder aus Verbänden (Landhandel), Beratung und Landwirtschaftskammern
- Politische Ansprache für den DEMAND-Ansatz auf Länder- und Bundesebene
- Weiterentwicklung des Konzepts gemeinsam mit unseren Mitgliedsunternehmen und Landwirten

Diskussion – Welche Chancen und Hürden sehen Sie?

- Bündelung von Wissen im Stakeholder-Dialog
- Zielsetzung: Lösungen zu einem großen Ganzen zusammenfügen und praxistauglich machen
- Wie kann das gelingen?
- Vorschlag: Dialogplattform zwischen Landwirten, Beratung, Wissenschaft und Industrie
 - Frankreich: Comifer
 - Comifer brings together all the experts, interested in soil fertility and plant nutrition.

 Together, they define the scientific bases and practical rules of reasoned fertilization and organize their dissemination to users.
 - It is a unique place in Europe for consultation, exchanges and debates bringing together all fertilization stakeholders from research, education, administration, professional agricultural organizations (technical institutes, federations, etc.), the fertilizer industry, distribution, services. Comifer has about."

Industrieverband Agrar e.V.
Fachbereich Pflanzenernährung
Johannes Monath
Mainzer Landstraße 55
60329 Frankfurt am Main
Telefon: +49 69 2556 1296

E-Mail: monath.iva@vci.de