


# Gliederung

Was ist Humus?
Übersicht Dauerfeldversuche
Standort Thyrow
Statischer Nährstoffmangelversuch Thyrow
Nährstoffmangelversuch Winterroggen
Statischer Bodenfruchtbarkeitsversuch
Zusammenfassung



#### Was ist Humus?



Fraktionen der organischen Bodensubstanz (Körschens et al. 1997)



#### Was ist Humus?

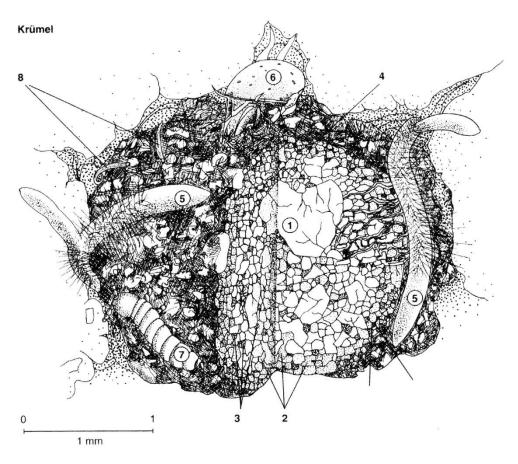



Abb. 2: Bodenkrümel mit Pflanzenwurzeln und Bodentieren sowie vergrößerter Krümeloberfläche (Vökt et al. 1991, zit. in Keller et al. 1997)



| Bodenart | Tongehalt (%) | Humusgehalt (%) | C <sub>org</sub> -Gehalt (%) |
|----------|---------------|-----------------|------------------------------|
| Sand     | 0 - 17        | 1,0 – 1,8       | 0,57 - 1,02                  |
| Lehm     | 12 – 35       | 2,5 – 4,6       | 1,4 – 2,6                    |
| Ton      | 45 – 65       | 5,3             | 3,0                          |



Lebenswissenschaftliche Fakultät

Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften

Lehr- und Forschungsstation Pflanzenbauwissenschaften



Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



#### Dauerfeldversuche der Humboldt-Universität zu Berlin

| 1923 | Bodenbearbeitungs- Kalk- P- und Stallmistdüngungsversuch (D III) | Dahlem |
|------|------------------------------------------------------------------|--------|
| 1937 | Statischer Nährstoffmangelversuch (D IV/1)                       | Thyrow |
| 1938 | Statischer Bodenfruchtbarkeitsversuch (D VI)                     | Thyrow |
| 1953 | Agrarmeteorlogisches Ertragsmessfeld (E-Feld)                    | Dahlem |
| 1969 | Beregnungs- und Düngungsversuch (D I)                            | Thyrow |
| 1973 | Fruchtfolge- und Strohdüngungsversuch (D V)                      | Thyrow |
| 1986 | Internationaler organischer und Stickstoffdüngungsdauerversuch   | Dahlem |
|      | (IOSDV)                                                          |        |
| 1998 | Nährstoffmangelversuch Winterroggen (D IV/2)                     | Thyrow |

Dauerversuchsparzellen 578


| Thyrow | 376 | Corg-Untersuchungen jährlich seit 1965 |
|--------|-----|----------------------------------------|
| Dahlem | 202 | Corg-Untersuchungen jährlich seit 2006 |



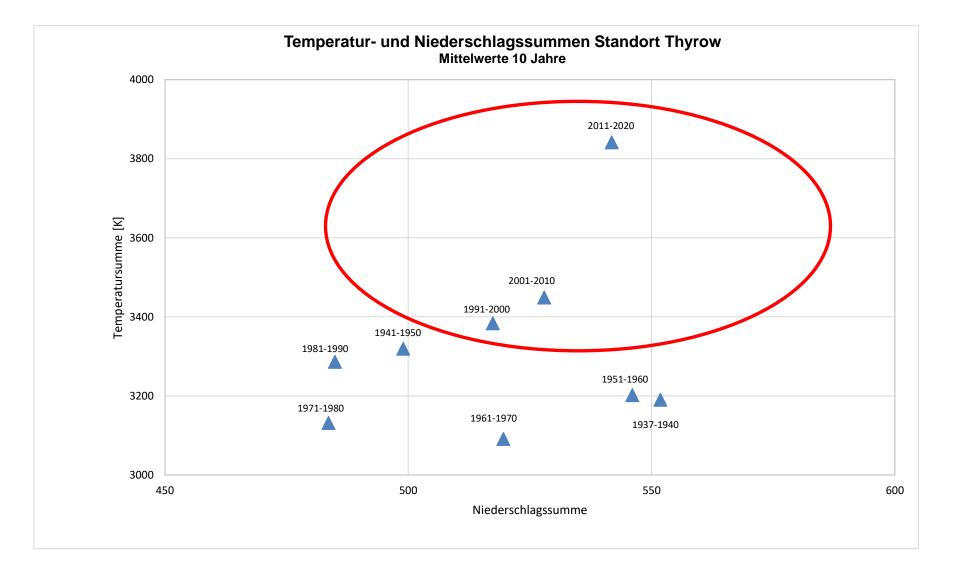








| Mittlere Lufttemperatur 2m (1991 – 2020) (°C)      | 9,7                      |
|----------------------------------------------------|--------------------------|
| Mittlerer Jahresniederschlag<br>(1991 – 2020) (mm) | 529                      |
| Ackerzahl                                          | 25                       |
| Bodenart                                           | Schwach schluffiger Sand |
| nFK (Vol%)                                         | 11,3                     |
| C <sub>org</sub> (mg 100g Boden <sup>-1</sup> )    | 580                      |
| pH (0-30 cm)                                       | 5,4 - 5,8                |
| P <sub>DL</sub> (mg 100g Boden <sup>-1</sup> )     | 5,6 - 8,0                |
| K <sub>DL</sub> (mg 100g Boden <sup>-1</sup> )     | 6,0 - 9,0                |
| Mg <sub>CaCl2</sub> (mg 100g Boden <sup>-1</sup> ) | 3,6 - 5,0                |


10




# Klima und Witterung











Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



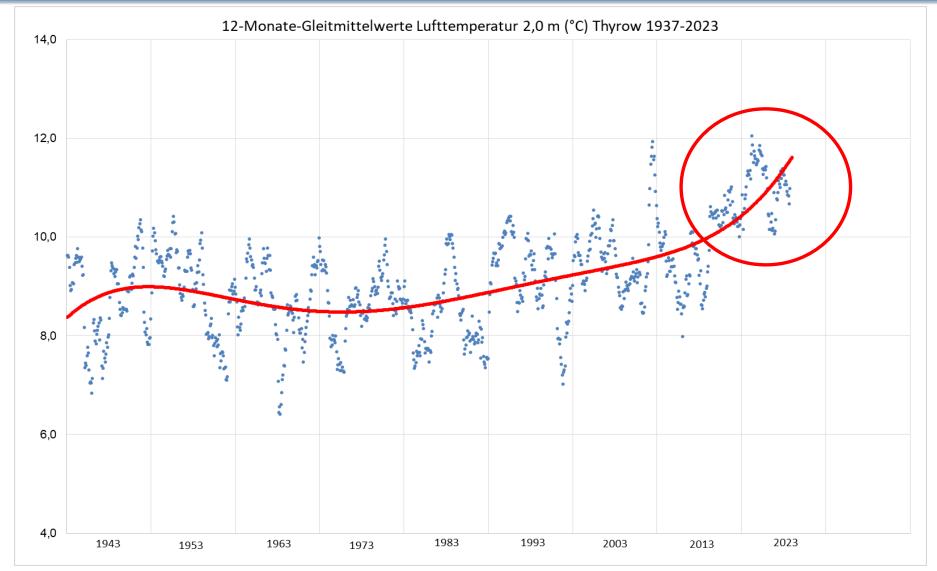
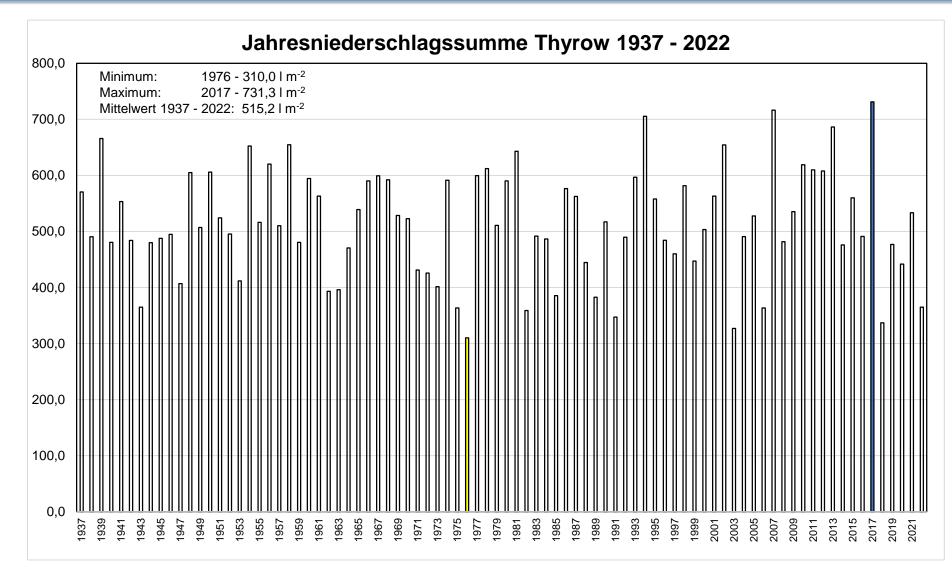
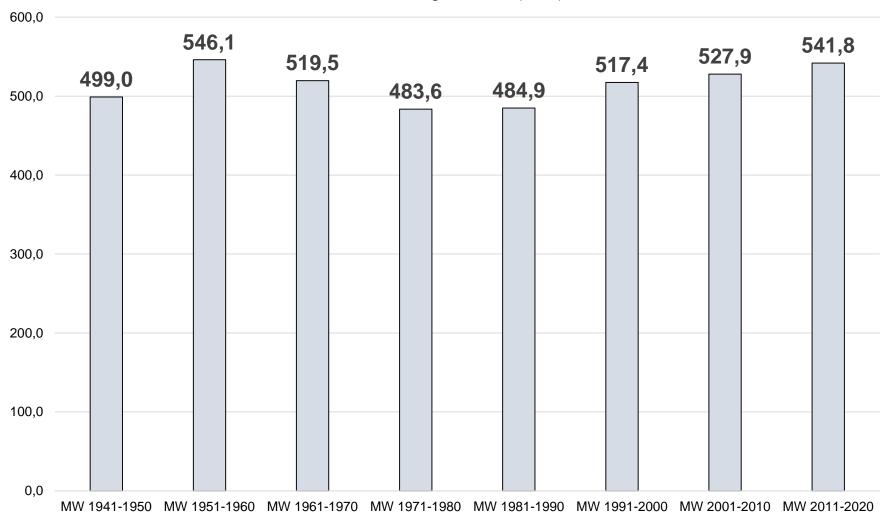




Diagramm nach Schellnhuber "SELBSTVERBRENNUNG - Die fatale Dreiecksbeziehung zwischen Klima, Mensch und Kohlenstoff"



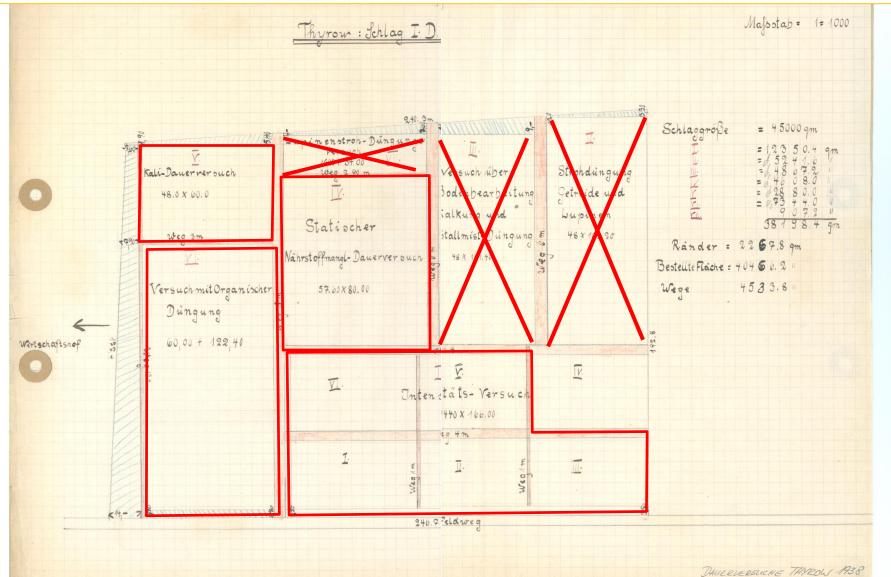











## Dauerfeldversuche am Standort Thyrow





## Erster Übersichtsplan der Feldversuche in Thyrow 1938











#### Historie des Statischer Nährstoffmangelversuch

1937 Anlage als Statischer Nährstoffmangel - Dauerversuch

1948 Teilung des Versuchs und Aufdüngung der Mangelparzellen auf dem Teilstück 2

1959 Einführung von Silomais in die Fruchtfolge

1959 Erneute Aufnahme der Mangeldüngung auf Teilstück 2

1972 Aufdüngung der Mangelparzellen auf Teilstück 2

1974 Einführung N-Stufe 2 (120 kg ha<sup>-1</sup> N) auf Teilstück 2

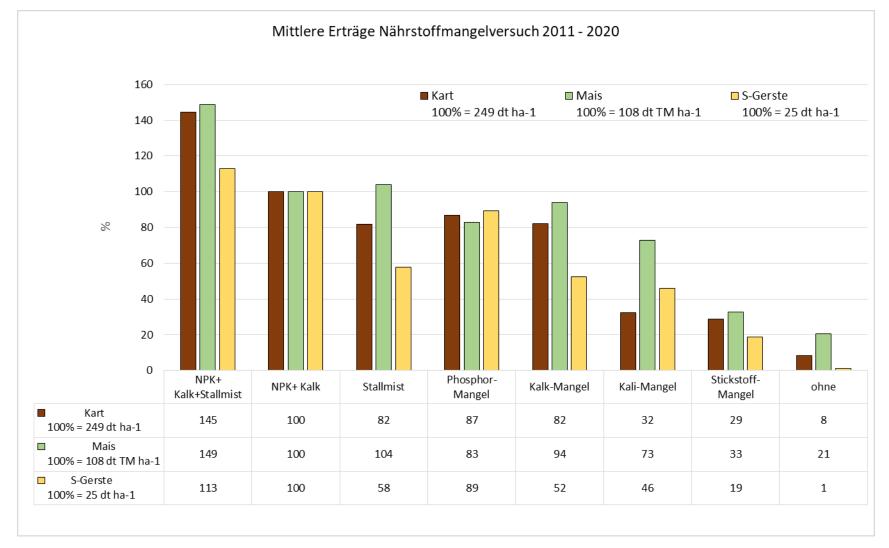
1998 Einführung der Winterroggenmonokultur und Mangeldüngungsparzellen auf dem Teilstück 2





## Statischer Nährstoffmangelversuch Thyrow Anlage 1937

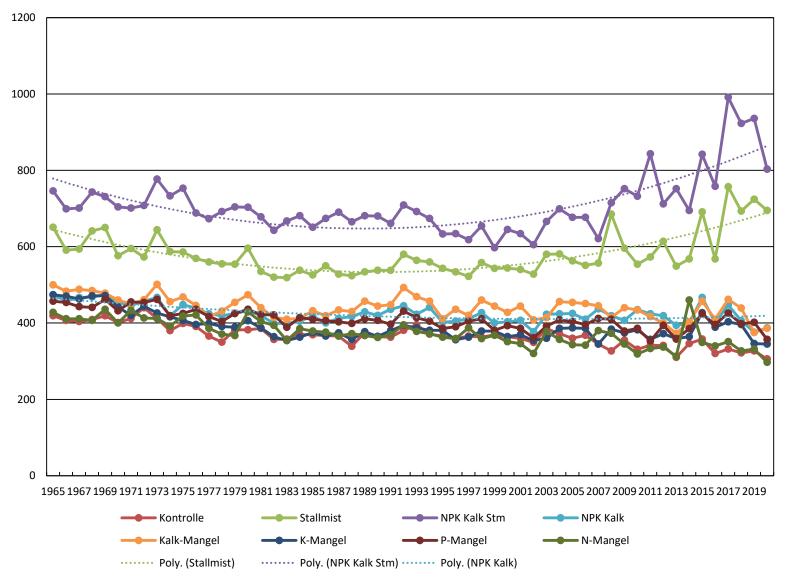
| Prüfglieder           |               |             | kg ha <sup>-1</sup> | N kg ha <sup>-1</sup> | P kg ha <sup>-1</sup> | K kg ha <sup>-1</sup> |
|-----------------------|---------------|-------------|---------------------|-----------------------|-----------------------|-----------------------|
| ohne Düngung          |               |             | 0                   | 0                     | 0                     | 0                     |
| organisch             |               | Stallmist * | 30.000              | 0                     | 0                     | 0                     |
| organisch-mineralisch | NPK + Kalk ** | Stallmist * | 30.000              | 60 / 90               | 24                    | 100                   |
| Mineralisch           | NPK + Kalk ** |             | 0                   | 60 / 90               | 24                    | 100                   |
| Kalkmangel            | NPK           |             | 0                   | 60 / 90               | 24                    | 100                   |
| Kaliummangel          | NP- + Kalk ** |             | 0                   | 60 / 90               | 24                    | 0                     |
| Phosphormangel        | N-K + Kalk ** |             | 0                   | 60 / 90               | 0                     | 100                   |
| Stickstoffmangel      | -PK + Kalk ** |             | 0                   | 0                     | 24                    | 100                   |


<sup>\*</sup> Stallmist alle 2 Jahre zur Blattfrucht

60 kg ha<sup>-1</sup> N zum Getreide 90 kg ha<sup>-1</sup> N zur Blattfrucht

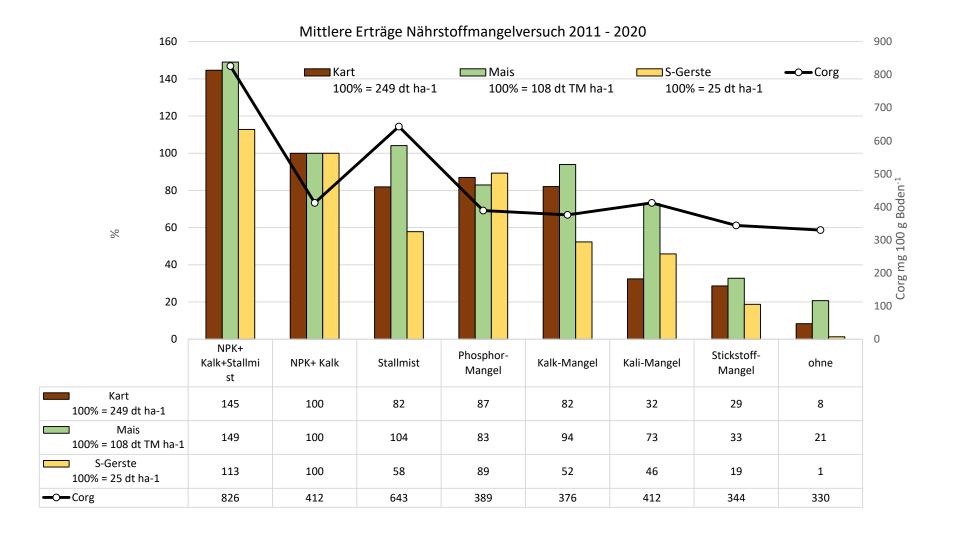
Fruchtfolge: Kartoffeln – Sommergerste – Silomais - Sommergerste

<sup>\*\*</sup> Kalk nach Bedarf Ziel pH-Wert 5,5





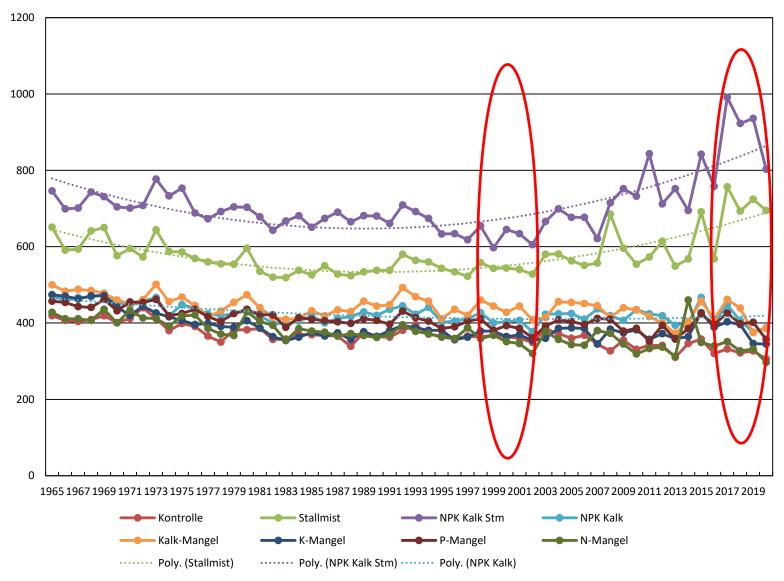

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften




#### SOC in mg/100 g Boden Statischer Nährstoffmangelversuch Thyrow










Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



#### SOC in mg/100 g Boden Statischer Nährstoffmangelversuch Thyrow







#### Corg-Gehalte (mg 100g Boden<sup>-1</sup>) Statischer Nährstoffmangelversuch Thyrow 1998 zu 2020

| Prüfglieder           | mineralisch   | organisch | 1998/2001 | 2017/2020 | 17/20 zu 98/01 |
|-----------------------|---------------|-----------|-----------|-----------|----------------|
| ohne Düngung          |               |           | 364       | 322       | 88 %           |
| organisch             |               | Stallmist | 546       | 717       | 131 %          |
| organisch-mineralisch | NPK + Kalk ** | Stallmist | 633       | 913       | 144 %          |
| Mineralisch           | NPK+ Kalk **  |           | 409       | 404       | 99 %           |
| Kalkmangel            | NPK           |           | 444       | 416       | 94 %           |
| Kaliummangel          | NP- + Kalk ** |           | 373       | 373       | 100 %          |
| Phosphormangel        | N-K + Kalk ** |           | 393       | 396       | 101 %          |
| Sickstoffmangel       | NPK+ Kalk **  |           | 356       | 327       | 92 %           |





Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



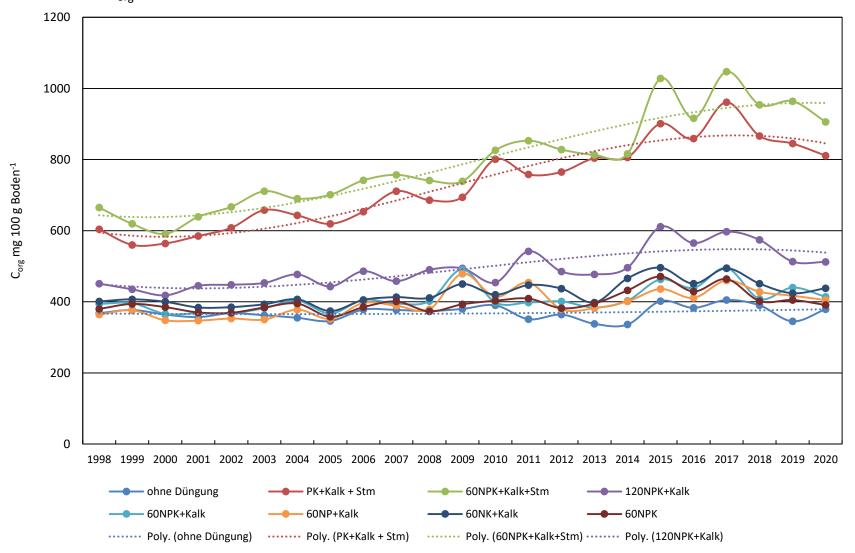
## Nährstoffmangelversuch Winterroggen Thyrow Anlage 1937/1998

| Prüfglieder           | Düngung<br>mineralisch | Düngung<br>organisch | Stallmist<br>kg ha <sup>-1</sup> | N<br>kg ha <sup>-1</sup> | P<br>kg ha <sup>-1</sup> | K<br>kg ha <sup>-1</sup> |
|-----------------------|------------------------|----------------------|----------------------------------|--------------------------|--------------------------|--------------------------|
| ohne Düngung          |                        |                      | 0                                | 0                        | 0                        | 0                        |
| organisch             |                        | Stallmist            | 15.000                           | 0                        | 0                        | 0                        |
| organisch-mineralisch | NPK + Kalk **          | Stallmist            | 15.000                           | 60                       | 24                       | 100                      |
| Mineralisch           | NPK + Kalk **          |                      | 0                                | 60                       | 24                       | 100                      |
| Mineralisch           | N2PK+ Kalk **          |                      | 0                                | 120                      | 24                       | 100                      |
| Kaliummangel          | NP- + Kalk **          |                      | 0                                | 60                       | 24                       | 0                        |
| Phosphormangel        | N-K + Kalk **          |                      | 0                                | 60                       | 0                        | 100                      |
| Kalkmangel            | NPK                    |                      | 0                                | 60                       | 24                       | 100                      |

<sup>\*\*</sup> Kalk nach Bedarf Ziel pH-Wert 5,5

Fruchtfolge: Kartoffeln – Sommergerste – Silomais - Sommergerste





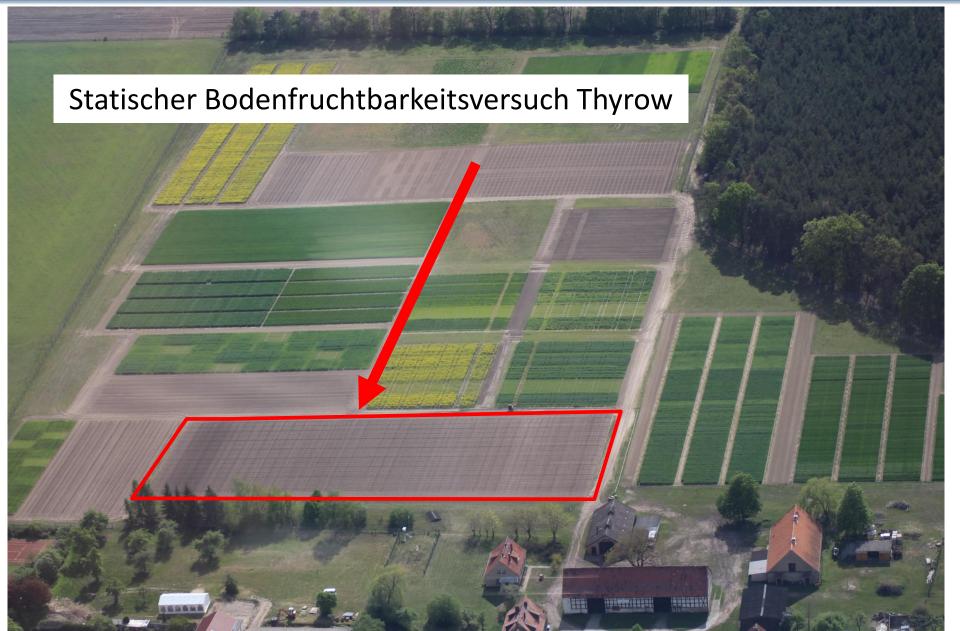

#### Kornertrag Winterroggen (dt ha<sup>-1</sup>)

| Prüfglieder           | mineralisch   | organisch | 1998 | 2020 |       |  |
|-----------------------|---------------|-----------|------|------|-------|--|
| ohne Düngung          |               |           | 13,1 | 10,0 | 76 %  |  |
| organisch             |               | Stallmist | 25,2 | 44,9 | 178 % |  |
| organisch-mineralisch | NPK + Kalk ** | Stallmist | 40,7 | 54,0 | 133 % |  |
| Mineralisch           | N2PK+ Kalk ** |           | 41,0 | 47,7 | 116 % |  |
| Mineralisch           | NPK+ Kalk **  |           | 36,5 | 35,7 | 98 %  |  |
| Kaliummangel          | NP- + Kalk ** |           | 35,0 | 30,5 | 87 %  |  |
| Phosphormangel        | N-K + Kalk ** |           | 37,4 | 33,9 | 91 %  |  |
| Kalkmangel            | NPK           |           | 36,8 | 34,2 | 93 %  |  |












### Corg-Gehalte (mg 100g Boden<sup>-1</sup>) Nährstoffmangelversuch Winterroggen 1998 zu 2020

| Prüfglieder           | mineralisch   | organisch | 1998/2001 | 2017/2020 | 17/20 zu 98/01 |
|-----------------------|---------------|-----------|-----------|-----------|----------------|
| ohne Düngung          |               |           | 367       | 380       | 104 %          |
| organisch             |               | Stallmist | 578       | 871       | 151 %          |
| organisch-mineralisch | NPK + Kalk ** | Stallmist | 629       | 968       | 154 %          |
| Mineralisch           | N2PK+ Kalk ** |           | 437       | 549       | 126 %          |
| Mineralisch           | NPK + Kalk ** |           | 381       | 439       | 115 %          |
| Kaliummangel          | NP- + Kalk ** |           | 359       | 428       | 119%           |
| Phosphormangel        | N-K + Kalk ** |           | 398       | 452       | 114 %          |
| Kalkmangel            | NPK           |           | 382       | 416       | 109 %          |





Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



## Statischer Bodenfruchtbarkeitsversuch Thyrow Anlage 1938

| Prüfglieder                 | Düngung<br>mineralisch | Düngung<br>organisch | kg ha <sup>-1</sup> | N1<br>kg ha <sup>-1</sup> | N2<br>kg ha <sup>-1</sup> | N3<br>kg ha <sup>-1</sup> |
|-----------------------------|------------------------|----------------------|---------------------|---------------------------|---------------------------|---------------------------|
| organisch                   | Kalk                   | Stallmist            | 20.000              | 0                         | 60                        | 120                       |
| mineralisch                 | NPK + Kalk             |                      | 0                   | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 20.000              | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 40.000              | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | GD                   | 0                   | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | GD + Stroh           | n. A.               | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | GD + Stallmist       | 20.000              | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | Stroh m. NA          | n. A                | 0                         | 60                        | 120                       |
| organisch-mineralisch       | NPK + Kalk             | Stroh                | n. A                | 0                         | 60                        | 120                       |
| organisch-mineralisch / Ton | NPK + Kalk             | Stallmist            | 20.000              | 0                         | 60                        | 120                       |

Ton = Oderbruchboden 1939 und 1940, Stroh-Prüfglieder seit 1974, N-Ausgleich = 0,7 kgN dt<sup>-1</sup> Stroh

Fruchtfolge seit 2005: Silomais - Winterroggen

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



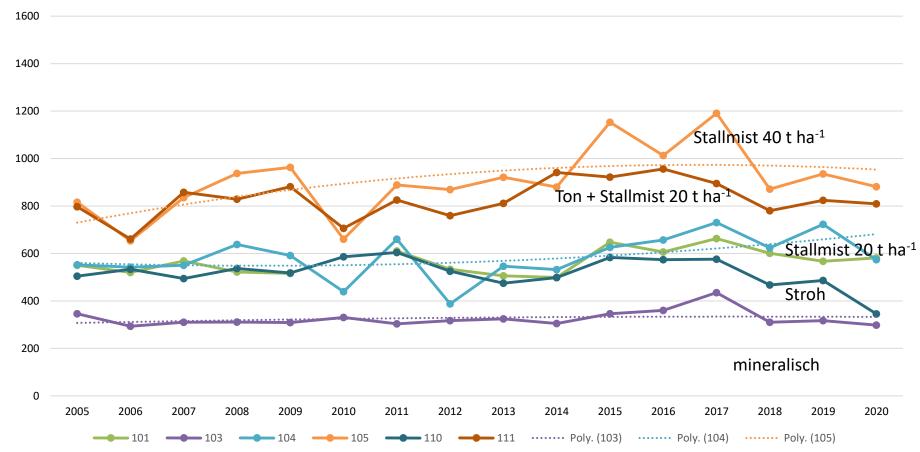
## Statischer Bodenfruchtbarkeitsversuch TM-Ertrag (dt ha<sup>-1</sup>) Silomais 2019

| Prüfglieder                 | Düngung<br>mineralisch | Düngung<br>organisch | kg ha <sup>-1</sup> | N1<br>dt TM ha <sup>-1</sup> | N2<br>dt TM ha <sup>-1</sup> | N3<br>dt TM ha <sup>-1</sup> |
|-----------------------------|------------------------|----------------------|---------------------|------------------------------|------------------------------|------------------------------|
| organisch                   | Kalk                   | Stallmist            | 20.000              | 74,6                         | -                            | -                            |
| mineralisch                 | NPK + Kalk             |                      | 0                   | 18,0                         | 97,5                         | 124,3                        |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 20.000              | 93,0                         | 180,7                        | 195,6                        |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 40.000              | 170,0                        | 188,6                        | 199,0                        |
| organisch-mineralisch       | NPK + Kalk             | GD                   | 0                   | 42,4                         | 130,6                        | 143,0                        |
| organisch-mineralisch       | NPK + Kalk             | GD + Stallmist       | 20.000              | 130,3                        | 196,5                        | 187,2                        |
| organisch-mineralisch       | NPK + Kalk             | GD + Stroh m. NA     | n. A.               | 42,3                         | 169,8                        | 158,0                        |
| organisch-mineralisch       | NPK + Kalk             | Stroh m. NA          | n. A                | 32,7                         | 147,2                        | 181,4                        |
| organisch-mineralisch       | NPK + Kalk             | Stroh                | n. A                | 44,7                         | 139,2                        | 172,3                        |
| organisch-mineralisch / Ton | NPK + Kalk             | Stallmist            | 20.000              | 128,1                        | 167,9                        | 177,1                        |

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



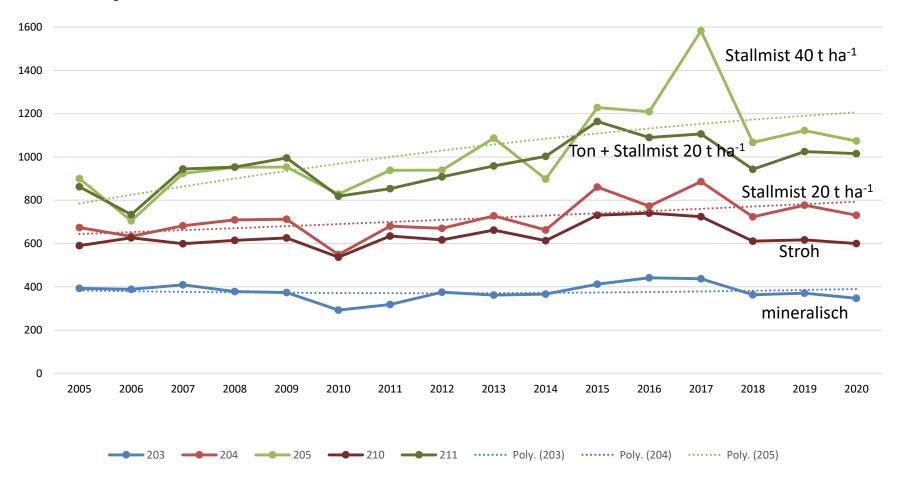
### Statischer Bodenfruchtbarkeitsversuch Korn-Ertrag (dt ha<sup>-1</sup>) Winterroggen 2020


| Prüfglieder                 | Düngung<br>mineralisch | Düngung<br>organisch | kg ha <sup>-1</sup> | N1<br>dt TM ha <sup>-1</sup> | N2<br>dt TM ha <sup>-1</sup> | N3<br>dt TM ha <sup>-1</sup> |
|-----------------------------|------------------------|----------------------|---------------------|------------------------------|------------------------------|------------------------------|
| organisch                   | Kalk                   | Stallmist            | 20.000              | 19,1                         | -                            | -                            |
| mineralisch                 | NPK + Kalk             |                      | 0                   | 6,3                          | 29,5                         | 43,6                         |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 20.000              | 17,8                         | 46,3                         | 57,6                         |
| organisch-mineralisch       | NPK + Kalk             | Stallmist            | 40.000              | 38,3                         | 54,9                         | 62,2                         |
| organisch-mineralisch       | NPK + Kalk             | GD                   | 0                   | 7,3                          | 39,5                         | 53,2                         |
| organisch-mineralisch       | NPK + Kalk             | GD + Stallmist       | 20.000              | 19,6                         | 56,6                         | 58,9                         |
| organisch-mineralisch       | NPK + Kalk             | GD + Stroh m. NA     | n. A.               | 8,6                          | 44,9                         | 58,5                         |
| organisch-mineralisch       | NPK + Kalk             | Stroh m. NA          | n. A                | 7,9                          | 35,7                         | 55,4                         |
| organisch-mineralisch       | NPK + Kalk             | Stroh                | n. A                | 10,6                         | 36,5                         | 57,3                         |
| organisch-mineralisch / Ton | NPK + Kalk             | Stallmist            | 20.000              | 28,1                         | 56,9                         | 60,5                         |

GD – kruzifere Sommerzwischenfrucht (Senf)

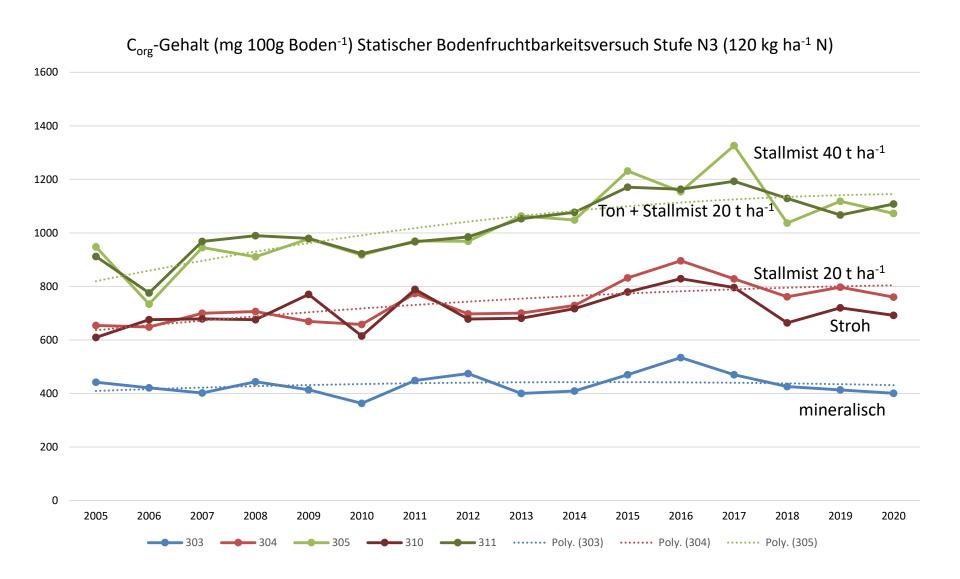





#### C<sub>org</sub>-Gehalt (mg 100g Boden<sup>-1</sup>) Statischer Bodenfruchtbarkeitsversuch Stufe N1 (0 kg ha<sup>-1</sup> N)





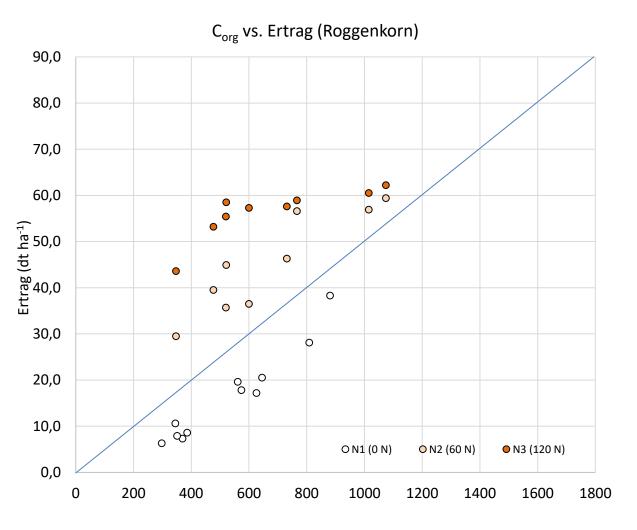



#### C<sub>org</sub>-Gehalt (mg 100g Boden<sup>-1</sup>) Statischer Bodenfruchtbarkeitsversuch Stufe N2 (60 kg ha<sup>-1</sup> N)







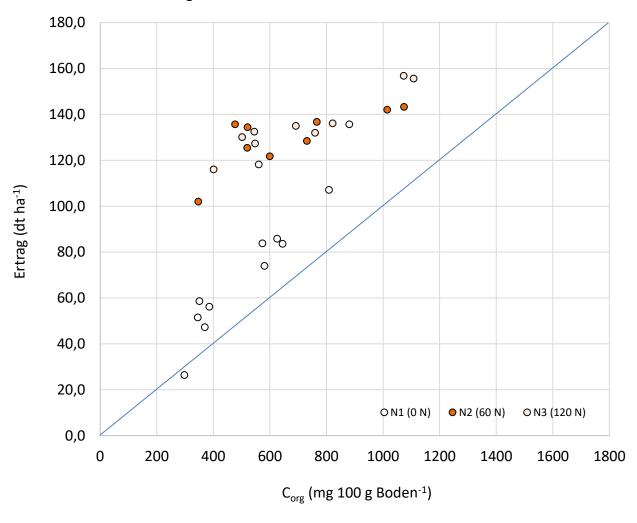



Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



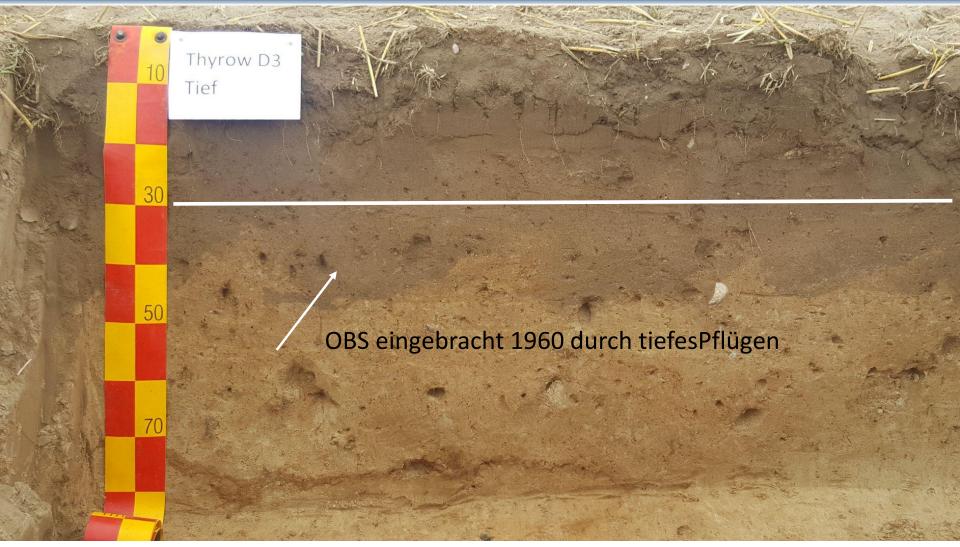
## Kohlenstoffgehalt des Bodens vs. Ertrag






C<sub>org</sub> (mg 100 g Boden<sup>-1</sup>)

LAD Südwest - Speyer - 11.10.2023




C<sub>org</sub> vs. Ertrag (TM-Ertrag Silomais)



LAD Südwest - Speyer - 11.10.2023





Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



### Zusammenfassung

Die Klimaveränderung ist messbar und zeigt sich im Osten Deutschlands durch höhere mittlere Temperaturen der Luft, bei unveränderter Höhe der Niederschläge. Die Folge des Temperaturanstiegs sind längere Phasen ohne Niederschlag, die die Produktivität der ackerbaulich genutzten Böden negativ beeinflussen.

Die Austrocknung der Böden in der Vegetationszeit über längere Zeiträume minimiert die biologische Aktivität der Böden, welche zu einen Anstieg der Kohlenstoffgehalte der Böden führt.

Der Kohlenstoffgehalt von ackerbaulich genutzten Böden ist vom Nährstoff-Input, vor allem Stickstoff, abhängig und wird somit vom Bewirtschaftungssystem beeinflusst.

Die Ertragshöhe wird nicht vom Kohlenstoffgehalt des Boden bestimmt.

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



## **Praxisinformationstag Thyrow 07.06.2024**



Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



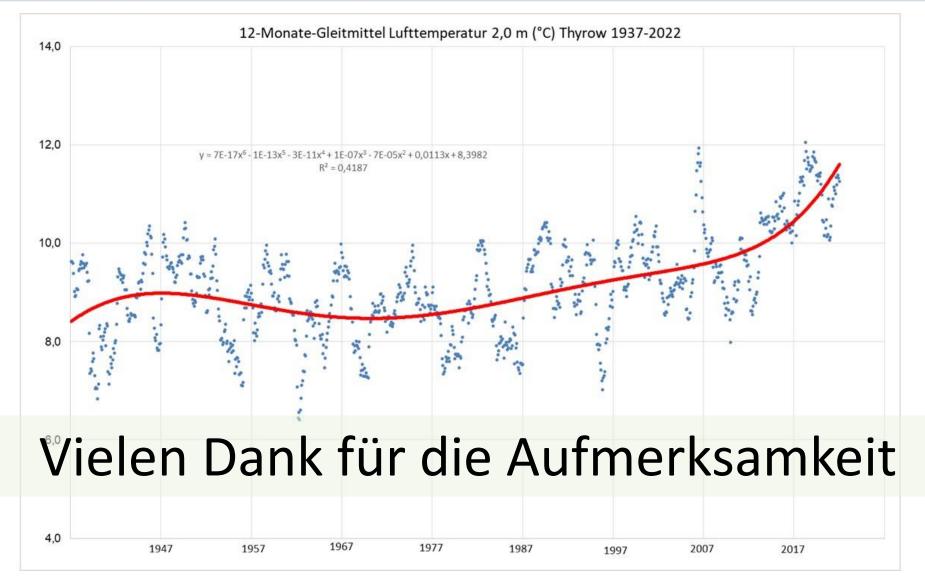



Diagramm nach Schellnhuber "SELBSTVERBRENNUNG - Die fatale Dreiecksbeziehung zwischen Klima, Mensch und Kohlenstoff"

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften



Roß, C.-L.; Baumecker, M.; Ellmer, F.; Kautz, T. Organic Manure Increases Carbon Sequestration Far beyond the "4 per 1000 Initiative" Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture 2022, 12, 170.

https://doi.org/10.3390/agriculture12020170